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THE KELLY SYSTEM
MAXIMIZES MEDIAN FORTUNE

S. N. ETHIER,∗ University of Utah

Abstract

It is well known that the Kelly system of proportional betting, which maximizes the
long-term geometric rate of growth of the gambler’s fortune, minimizes the expected
time required to reach a specified goal. Less well known is the fact that it maximizes the
median of the gambler’s fortune. This was pointed out by the author in a 1988 paper,
but only under asymptotic assumptions that might cause one to question its applicability.
Here we show that the result is true more generally, and argue that this is a desirable
property of the Kelly system.
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1. Introduction

Consider a game of chance that is played repeatedly and is advantageous to the gambler. A
proportional betting system is one in which the bettor wagers a fixed proportion f ∈ [0, 1] of his
current fortune at each trial. Let X1, X2, . . . be independent and identically distributed (i.i.d.)
[−1, ∞)-valued random variables with 0 < E[X1] < ∞, Xl representing the proportional
bettor’s net gain (positive or negative) per unit bet at trial l. Then his fortune Fn(f ) after n

trials is given by

Fn(f ) =
n∏

l=1

(1 + f Xl), (1)

assuming (without loss of generality) an initial fortune F0(f ) := 1. The strong law of large
numbers implies that

lim
n→∞ n−1 ln Fn(f ) = E[ln(1 + f X1)] (2)

almost surely. The choice f ∗ of f that maximizes the right side of (2), which might be called
the long-term geometric rate of growth of the proportional bettor’s fortune, results in a betting
system known as the Kelly (1956) system.

A well-known optimality property of the Kelly system, due to Breiman (1961), is that it
minimizes the expected time required to reach a specified goal. Less well known is the fact that
it maximizes the median of the proportional bettor’s fortune. Actually, both of these results are
true only in an asymptotic sense. The median result was pointed out by Ethier (1988), but the
underlying asymptotic assumptions might cause one to question its applicability. Here we show
that the conclusion is valid more generally than was previously realized. Maslov and Zhang
(1998) argued that the Kelly system maximizes median fortune, but based their argument on
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the premise – typically false – that the mean and the median of a sum of i.i.d. random variables
are equal.

We begin by reviewing the earlier median result.

2. Geometric Brownian motion approximation

We replace the i.i.d. sequence X1, X2, . . . by a one-parameter family of i.i.d. sequences
X1(ε), X2(ε), . . . of nondegenerate [−1, ∞)-valued random variables, parametrized by the
mean, that is, E[X1(ε)] = ε, where 0 ≤ ε < ε0. We assume that X1(ε)

d−→ X1(0) in R

as ε → 0, where ‘
d−→’ denotes convergence in distribution, and we require two technical

assumptions, namely that E[X1(ε)/(1 + X1(ε))] < 0 (here and elsewhere, −1/0 := −∞) for
0 < ε < ε0, and that {X2

1(ε) : 0 < ε < ε0} is uniformly integrable. Let σ 2(ε) := var[X1(ε)].
Defining f ∗(ε) to be the unique f ∈ (0, 1) that maximizes E[ln(1 + f X1(ε))], we observe
that, given α > 0 such that αf ∗(ε) < 1 for 0 < ε < ε0,

Yε(t) :=
�σ 2(ε)t/ε2�∏

l=1

(1 + αf ∗(ε)Xl(ε))

represents the proportional bettor’s fortune after �σ 2(ε)t/ε2� trials (where �·� denotes the
integer part of its argument), assuming a betting proportion of αf ∗(ε), that is, α times the Kelly
betting proportion.

Ethier (1988) showed that Yε
d−→ Y in D(0,∞)[0, ∞) as ε → 0, where

Y (t) := exp{α(1 − α/2)t + αW(t)}, t ≥ 0, (3)

W being a standard Brownian motion and D(0,∞)[0, ∞) the space of right-continuous sample
paths with left limits and with values in (0, ∞). A simple corollary of this is that, for fixed
t > 0,

lim
ε→0

median[Yε(t)] = median[Y (t)] = exp{α(1 − α/2)t}, (4)

and this is maximized by α = 1. In fact, the convergence in (4) holds uniformly for α ∈ [0, 2]
and so, when ε = E[X1(ε)] is small, median[Yε(t)] is maximized on [0, 2] by α close to 1.

One might object that E[X1(ε)] is fixed in practice and, while typically small, does not
tend to zero in any sense. But then the same objection would apply to the widely accepted
approximation based on the result that

f ∗(ε) = ε

σ 2(ε)
(1 + o(1)) as ε → 0.

Nevertheless, it is possible to show that median fortune is maximized when the wagers are
fixed, and we take this up in what follows.

3. The case of two possible outcomes at each trial

We return to the situation in which there is a single i.i.d. sequence of [−1, ∞)-valued random
variables X1, X2, . . . with 0 < E[X1] < ∞. In this section we specialize to the case in which X1
assumes only two values, namely a > 0 with probability p and −1 with probability q := 1−p.
In other words, the game pays odds of a to 1 on the occurrence of an event of probability p.
The assumption of a positive mean tells us that (a + 1)p − 1 > 0.
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Given n ≥ 1, let Bn := |{1 ≤ l ≤ n : Xl = a}| be the number of wins in the first n trials.
Then Bn is binomial(n, p) and

Fn(f ) = (1 + af )Bn(1 − f )n−Bn =
(

1 + af

1 − f

)Bn

(1 − f )n.

Now the log of the median is the median of the log, so

ln(median[Fn(f )]) = median[Bn] ln

(
1 + af

1 − f

)
+ n ln(1 − f ).

Next we cite a theorem of Edelman (1979) and Hamza (1995), which states that the mean
and median of a binomial differ by less than ln 2 = 0.693 · · · . Thus, γn,p := median[Bn]−np

satisfies |γn,p| < ln 2. Noting that

E[ln(Fn(f ))] = np ln(1 + af ) + nq ln(1 − f ), (5)

we find that

ln(median[Fn(f )]) = (np + γn,p) ln

(
1 + af

1 − f

)
+ n ln(1 − f )

= (np + γn,p) ln(1 + af ) + (nq − γn,p) ln(1 − f )

= E[ln(F ∗
n (f ))],

where F ∗
n (f ) is Fn(f ) with p replaced by pn := p + γn,p/n = median[Bn]/n. Since (5) is

uniquely maximized by the Kelly proportion

f ∗ = (a + 1)p − 1

a
= E[X1]

a
,

it follows that median[Fn(f )] is uniquely maximized at

f̃n = (a + 1)pn − 1

a
= f ∗ + a + 1

a

γn,p

n
. (6)

(Actually, median[binomial(n, p)], as a function of p, is a nondecreasing, integer-valued step
function, the value of which is ambiguous at each of its n jumps. We adopt the convention that
this function be right continuous, thereby eliminating the ambiguity.)

Thus, the median-maximizing proportion f̃n is f ∗ +O(n−1). But notice that there are cases
in which this approximation is exact: if the binomial mean np is an integer, then, since the
binomial median is always an integer and they differ by less than 1, we have γn,p = 0 and
therefore f̃n = f ∗.

For example, if a = 1 and n = 100, then for p = 0.51 the median-maximizing proportion
f̃n is precisely the Kelly proportion f ∗ = 0.02, while for p = 0.505 we find that f̃n = 0.02
and f ∗ = 0.01. This is a natural consequence of approximating a continuous function by a
step function.

The latter example suggests that a more useful way to state (6) might be

f̃n

f ∗ = 1 + a + 1

E[X1]
γn,p

n
,

which shows that, the smaller E[X1] is, the larger n must be to ensure a relative error within
specified bounds.
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4. The case of more than two possible outcomes at each trial

As in Section 1, let X1, X2, . . . be i.i.d. [−1, ∞)-valued random variables with 0 < E[X1] <

∞, and define Fn(f ) for each f ∈ [0, 1] and n ≥ 1 by (1). Further, for 0 ≤ f < 1 let

µ(f ) := E[ln(1 + f X1)], σ 2(f ) := var[ln(1 + f X1)].
Let {fn} ⊂ [0, 1) be a (nonrandom) sequence that converges to f ∈ [0, 1). Then, by the

Lindeberg–Feller theorem,

ln(Fn(fn)) − nµ(fn)√
n

= 1√
n

( n∑
l=1

ln(1 + fnXl) − nµ(fn)

)
d−→ N (0, σ 2(f )),

where N (0, σ 2(f )) is the normal distribution with mean zero and variance σ 2(f ). Here we
are using the fact that supn≥1 E[| ln(1 + fnX1) − µ(fn)|3] < ∞. It follows that

ln(median[Fn(fn)]) − nµ(fn)√
n

= median

[
ln(Fn(fn)) − nµ(fn)√

n

]

→ median[N (0, σ 2(f ))] = 0.

Since {fn} was arbitrary, we conclude that

ln(median[Fn(f )]) − nµ(f )√
n

→ 0,

uniformly in f in compact subsets of [0, 1), or, equivalently, that

median[Fn(f )] = enµ(f )+o(
√

n), (7)

uniformly in f in compact subsets of [0, 1).
Let us further assume that µ′(1−) = E[X1/(1 + X1)] < 0. This guarantees that there is

a unique f ∈ (0, 1) that maximizes µ(f ); as before, we denote this Kelly proportion by f ∗.
Suppose that, for each n ≥ 1, f̃n ∈ [0, 1) maximizes median[Fn(f )] as a function of f . Then

1 ≥ median[Fn(f
∗)]

median[Fn(f̃n)]
= exp{n[µ(f ∗) − µ(f̃n)] + o(

√
n)}.

Since µ(f ∗) − µ(f̃n) ≥ 0 and µ′′(f ∗) < 0, we have

o(n−1/2) = µ(f ∗) − µ(f̃n) = − 1
2 (f̃n − f ∗)2[µ′′(f ∗) + o(1)]

and therefore
f̃n = f ∗ + o(n−1/4). (8)

In view of (6), this may not be the best possible rate of convergence. To improve it we would
need to improve the error term in (7).

Nevertheless, (7) is sufficient to tell us that, if f0 ∈ [0, 1) differs from f ∗ (with f ∗ as in the
preceding paragraph), then

median[Fn(f
∗)]

median[Fn(f0)] = exp{n[µ(f ∗) − µ(f0)] + o(
√

n)} → ∞
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exponentially fast. This is one sense in which the Kelly system (asymptotically) maximizes
median fortune.

We now turn to the question of whether the error term in (7) can be improved. A random
variable Y1 is said to be lattice if there exist b ∈ R and h > 0 such that P{Y1 ∈ b + hZ} = 1,
where Z is the set of integers; otherwise Y1 is said to be nonlattice. If in the lattice case h is
chosen maximally, it is called the maximum span of Y1.

Typically, in gambling situations, X1 is lattice, hence 1 + f X1 is lattice, and therefore,
except in the case covered by Section 3, ln(1 + f X1) is nonlattice for most f . For example,
if X1 has support {−1, 0, 1}, then ln(1 + f X1) is lattice if and only if ln(1 + f )/ ln(1 − f ) is
rational, which is the case for at most countably many f ∈ (0, 1). Furthermore, if it is lattice
with ln(1 + f )/ ln(1 − f ) = −r/s, where r and s are positive, relatively prime integers, then
its maximum span is given by h = ln(1 + f )/r < ln 2.

Hall (1980) proved that if Y1, Y2, . . . are i.i.d. nonlattice random variables with finite third
absolute moment, mean µ, variance σ 2 > 0, and third central moment τ , then

median[Y1 + · · · + Yn] = nµ − τ

6σ 2 + o(1).

Using an argument analogous to that of Hall, it is possible to obtain a related, albeit less precise,
result in the lattice case. Let Y1, Y2, . . . be i.i.d. lattice random variables with maximum span
h. Assume that Y1 has finite third absolute moment, mean µ, variance σ 2 > 0, and third central
moment τ . Then, by a theorem of Esseen and a local central limit theorem (see Section 43,
Theorem 1, and Section 51, Theorem 2, respectively, of Gnedenko and Kolmogorov (1968))
we can write

median[Y1 + · · · + Yn] = nµ − τ

6σ 2 + θnh + o(1),

where − 1
2 ≤ θn ≤ 3

2 .
Consequently, regardless of whether ln(1 + f X1) is lattice or nonlattice,

median[Fn(f )] = enµ(f )+O(1). (9)

The problem with (9) is that we have proved it only for fixed f ∈ [0, 1). If we could prove that
(9) holds uniformly in f in compact subsets of [0, 1), thereby improving (7), we would then
have f̃n = f ∗ + O(n−1/2), thereby improving (8).

5. Simultaneous wagers

Here we generalize the results of the previous section to the case in which there are several
wagers to choose from at each trial, at least one of which has positive expectation. A typical
example would be a sufficiently biased roulette wheel.

Given d ≥ 1, let X1, X2, . . . be i.i.d. [−1, ∞)d -valued random variables with E[X1,i] < ∞
for i = 1, . . . , d and E[X1,i] > 0 for some i ∈ {1, . . . , d}, where X1 := (X1,1, . . . , X1,d ). Let

� := {f = (f1, . . . , fd) ∈ [0, 1]d : f1 + · · · + fd ≤ 1},
and define Fn(f ) for each f ∈ � and n ≥ 1 by

Fn(f ) :=
n∏

l=1

(1 + f · Xl ).
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We define �◦ := {f ∈ � : f1 + · · · + fd < 1}, and for f ∈ �◦ we let

µ(f ) := E[ln(1 + f · X1)].
The argument in Section 4 shows that

median[Fn(f )] = enµ(f )+o(
√

n), (10)

uniformly in f in compact subsets of �◦.
Now let us further assume that the components of X1 have finite variance and are linearly

independent (but not necessarily stochastically independent), that is, there does not exist
h ∈ R

d − {0} (nonrandom) such that P{h · X1 = 0} = 1. Then, for each f ∈ �◦, the
matrix of second-order partial derivatives of µ(f ), which we denote by ∇2µ(f ), is negative
definite. We can therefore adapt the argument of Section 4 to obtain that, if µ(f ) has a unique
maximum at f ∗ ∈ �◦, and if, for each n ≥ 1, f̃n ∈ �◦ maximizes median[Fn(f )] as a function
of f , then

o(n−1/2) = µ(f ∗) − µ(f̃n)

= −(f̃n − f ∗) · ∇µ(f ∗) − 1
2 (f̃n − f ∗)[∇2µ(f ∗) + o(1)](f̃n − f ∗)�. (11)

Now, if f ∗
i = 0 then (∂µ/∂fi)(f

∗) ≤ 0, while if f ∗
i > 0 then (∂µ/∂fi)(f

∗) = 0. This allows
us to conclude that

f̃n = f ∗ + o(n−1/4).

Alternatively, if µ(f ) has a maximum at f ∗ ∈ �◦ (not necessarily unique), and if f0 ∈ �◦
satisfies µ(f0) < µ(f ∗), then (10) implies that

median[Fn(f
∗)]

median[Fn(f0)] → ∞

exponentially fast. Thus, the results of Section 4 can be extended to this setting under suitable
assumptions.

6. Remarks

Remark 1. Leib (2000) argued that the Kelly system is not special because it optimizes neither
mean fortune nor the probability of a positive net gain. When it was suggested to him that he
consider the median, he responded that “…maximizing median final bankroll is a concept with
a face only a mathematician could love.”

We disagree. The mean and the median are the two most widely used measures of central
tendency, with the median often preferred for highly skewed populations such as annual
incomes or housing prices. The proportional bettor’s fortune is, by virtue of (3), approximately
lognormal, which is itself a rather skewed distribution. For this reason, the median is not only
an appropriate measure, it is arguably the most natural.

However, the median does not correspond to a utility function. To those, such as Maslov
and Zhang (1998), who see utility functions as artificial, this would not be a problem. To
economists, it might be seen as a drawback.

Remark 2. We have assumed throughout that X1 ≥ −1, that is, one cannot lose more than
one bets. However, as Thorp (2000) pointed out, this is too restrictive in the financial markets.
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It is also too restrictive in blackjack, due to the doubling and splitting options. Fortunately, the
assumption can be relaxed to X1 ≥ −K , where K > 0.

To see this, it suffices to note that if X1 ≥ −K , then X1/K satisfies the original assumption;
moreover, denoting Fn(f ) of (1) by Fn[X1, . . . , Xn](f ), we have

Fn[X1, . . . , Xn](f/K) = Fn[X1/K, . . . , Xn/K](f ).

For example, if f ∗ is the Kelly betting proportion for X1/K, . . . , Xn/K , then f ∗/K is the
Kelly betting proportion for X1, . . . , Xn. The same implication holds for median-maximizing
betting proportions.

Remark 3. Kelly’s system is widely used in practice – see Thorp (2000) for a survey of
applications. Of course, in most cases the assumptions we have made are not literally satisfied.
Specifically, the assumption of i.i.d. trials is usually not met, and the implicitly assumed infinite
divisibility of capital is rarely if ever satisfied. Although we do not have a formal result to
this effect, we believe that conclusions based on these assumptions are quite robust to minor
departures from the assumptions.
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